
 WAIStation Nifty Scripting Language
 Unbelievably Informative
 Manual, Version .001

 Art Medlar
 18 January 1991

The WAIStation Nifty Scripting Language is a based on that used by the White Knight
telecommunications program for Macintosh computers. With only a few exceptions and
additions, the commands available in WAIStation are functionally identical to those used by
White Knight. The language falls into the class referred to by professional computer
scientists as “krufty”. But we make no apologies. The language existed, was easy to
implement, and since it was compatible, allowed us to test scripts with White Knight long
before WAIStation was up to the task.

Command Syntax:
A command line is a command, followed by the zero or more required arguments, and
terminated by a carriage return. The available commands are described below. If you are
using an earlier version of WAIStation, you may find that not all of these commands are
supported. If so, you should pick up a newer release as soon as possible.

Each line of the script is a separate command. Blank lines are ignored. A line may be
commented out by surrounding it with parentheses. Each line must be commented
independently; comments can not extend across multiple lines.

A label is a marker within a procedure file indicating a location which can be branched to
with a GOSUB or JUMPTO command. Labels consist of a line beginning with a colon followed
by any number of characters including tabs and spaces, and ending with a carriage return.
Except for when a GOSUB or JUMPTO is looking for one, labels are otherwise ignored.

Command Arguments:
There are several different types of arguments to commands. If a command requires more
than one argument, the arguments must be separated by commas. The following few
paragraphs describe the various argument types.

A numeric constant (num) is any whole number, between roughly positive and negative 2
billion.

A numeric variable (num-var) is a letter between a and z, possibly followed by a digit
between 0 and 9, and ended with a %. The case of the letter part of the variable is not
significant. The following are valid numeric variables:

 a1% (which is the vary same variable as A1%), b%, G2%

Numeric variables are used for storing numeric constants. If you try to store something that
isn’t a numeric constant into a numeric variable, there will be a great flash of light, and
WAIStation will go away. If you try to store something way too big into a numeric variable,
like over 2 billion or so, not only are you probably doing something wrong, but the
unexpected will probably happen as well. Although there are 264 different possible variable
names, you are only allowed to have a total of 20 active, non-empty numeric variables at
one time.

A numeric expression (num-exp) is either a numeric variable or a numeric constant.

A string constant (str) is a group of one or more letters, numbers, punctuation, and spaces.
Spaces at the beginning or end of a string are ignored. A string can be pretty long, up to
roughly the available memory of the machine you’re using. Unfortunately, the maximum
length of a line in the script is 1024 characters, so it’s not easy to get one that big.

A string variable (str-var) is a letter, possibly followed by a digit, and ended with a $. The
case of the letter is not significant. The following are valid string variables:

 q1$ (which is the vary same variable as Q1$), b$, G2$

String variables are used for storing string constants. If you try to store something that isn’t
a string constant into a string variable, a screaming will come across the sky, and WAIStation
will act in an unfriendly manner. You can store string constants of any length into a string
variable. Although there are a whole lot of possible names for string variables, you are only
allowed to have 20 non-empty, active string variables at one time. This is in addition to the
number of possible numeric variables; the total number of both kinds allowed at one time is
thus 40.

A boolean (boolean) constant is one of TRUE or FALSE. YES is synonymous with TRUE and
NO is synonymous with FALSE,. Sometimes that makes things a tad more readable.

There is a special flag, straightforwardly called the yes/no flag, which is set and examined by
a couple of commands. Its default state is undefined, so you should probably use a
command to set it before you use one to examine it. Once it is set, however, it remains set
until either it is reset or the script finishes running.

Error Handling:
Currently, error handlingis awfully primitive. In most cases, errors are signalled with a little
OK dialog box, and then WAIStation bites the wax tadpole. Someday, there might be
something better, but until then you are advised simply to not make mistakes.

COMMANDS:
Input and output commands:

TYPE str-exp
Str-exp is sent to the modem. If str-exp is a string or numeric variable, that is, one or
two alphanumeric characters followed by a $ or %, and the variable has already had
something stored into it, then its contents will be sent instead. If the variable is empty,
then the name of the variable will be typed. This is a not entirely elegant way of
handling the situation where the user wants a literal string like, “a%”, to be typed.

PROMPT str-exp
The procedure waits until a string matching str-exp is received by the modem. The
string must be matched exactly, upper and lower case are significant.

QUERY str-var, str-exp
A dialog box containing str-exp as its prompting text, a cancel and an OK button, and an
area for text input appears. Text entered is stored into str-var when the OK button is
clicked. This command is particularly useful with systems requiring passwords. The
command:
 QUERY a$, What is your password?
will store the users typed password into the variable a$, which can then subsequently be
TYPE’d to the remote system. Since this command requires user input, it should not be
used in scripts for sources that will be automatically updated, since no one is likely to be
around when the automatic updation takes place.

.i.ALERT1 ;str-exp/proc-cmd

.i.ALERT2 str-exp/proc-cmd
ALERT3 str-exp/proc-cmd

Alerts are a nice way of waiting for more than one possible thing to be returned . In fact,
you can wait for three things in addition to a PROMPT. While the PROMPT command is
waiting for an expected string, sometimes something slightly less likely comes back. If
the less likely thing matches one of the str-exp’s, the proc-cmd following the / is
executed. Alerts, if any, must come before the PROMPT command. If proc-cmd is
GOSUB, and the str-exp is matched, the subroutine will return to the line following the
PROMPT command. When an ALERT or PROMPT is matched, all pending alerts are
cleared.

PANICAFTER num-exp
If num-exp seconds pass while waiting for a prompt, a panic condition occurs, and the
proc-cmd argument to the currently active ONPANIC command is executed. If there is no
currently active ONPANIC command, nothing happens. An ONPANIC command is active if
it has been called since the last successful matching of a prompt or alert. When a
prompt or alert is matched, all ONPANIC and PANICAFTER commands are cleared.

ONPANIC proc-cmd
If a panic condition occurs during execution of a PROMPT command or while an ALERT is
active, proc-cmd is immediately executed. Proc-cmd is cleared whenever a prompt or
alert is successfully matched.

JUMPTO label
An immediate branch to label happens. If label does not exist, an error is signalled.

GOSUB label
An immediate branch to label is performed. Execution continues until a RETURN
statement is encountered, which then causes a branch back to the statement
immediately following the GOSUB. Subroutines can be nested 20 deep, and can be called
recursively. If label does not exist, an error is signalled.

RETURN
This command must only occur during a branch to a subroutine within the script.
Appearing anywhere else signals an error. Execution branches back to the line
immediately following the most recently called GOSUB.

IF YES proc_cmd
If the yes-no flag is set to YES, then proc-cmd is executed, otherwise it is not.

IF NO proc-cmd
If the yes-no flag is set to NO, then proc-cmd is executed, otherwise it is not.

Arithmetic Commands:

AND num-var, num-exp
Does a binary AND to the value of num-exp and the value contained in num-var, and
stores the result into num-var. Num-exp is not affected.

OR num-var, num-exp
Does a binary OR to the value of num-exp and the value contained in num-var, and
stores the result into num-var. Num-exp is not affected.

ADD num-var, num-exp
Adds the value of num-exp to the value contained in num-var and stores the result in
num-var. Num-exp is not affected.

SUBTRACT num-var, num-exp
Subtracts the value of num-exp from the value contained in num-var and stores the
result in num-var. Num-exp is not affected.

MULTIPLY num-var, num-exp
Multiplies the value of num-exp with the value contained in num-var and stores the
result in num-var. Num-exp is not affected.

DIVIDE num-var, num-exp
Divides the value of num-var by the value contained in num-exp and stores the result in
num-var. It’s anybody’s guess what happens if the value of num-exp is Zero. Num-exp
is not affected.

BYTEVAL str-var, num-exp, num-var
The ASCII value of the num-expth byte of str-var is stored in num-var. No checking is
done to determine if, in fact, there is a num-expth byte of str-var. No error is signaled if
there isn’t.

BYTEADD num-exp, str-var
Bungs on a character with ASCII value num-exp to the end of the string contained in str-
var. Heaven knows why you would ever need to do this.

TEST num-var, num-test-op, num-exp
An arithmetical test is performed between the contents of num-var and the value of
num-exp. The result of this test is used to set the yes/no flag. Num-test-op can be one
of <, >, >=, <=, <>, &, |, all of which have the obvious meaning. If the test is true the
yes/no flag is set to YES, otherwise NO. This command does not require commas
between the arguments, they can be replaced by spaces. Spaces don’t make things
ambiguous and do make it a lot easier to read. Num-var and Num-exp are not affected
by this operation.

String Manipulation Commands:

CONCAT str-var, str-exp
The string str-exp is bunged onto the end of the string contained in str-var and the result
is stored back into str-var. Str-exp is not affected by this operation.

CONTAINS str-var, str-exp
If the string contained in str-var contains str-exp, the value of the yes/no flag is set to
YES. Otherwise it is set to NO. Str-var and str-exp are left unchanged. This operation is
case-sensitive.

CONVUP str-var
The string contained in str-var is converted to upper-case.

COPYINTO str-var, str-exp
The contents of str-exp are copied into str-var. The old contents of str-var, if any, are
lost, the old contents of str-exp are left unchanged.

EMPTY str-var
If str-var contains no characters, the yes/no flag is set to YES, otherwise it is set to NO.

LENGTH num-var, str-exp
The number of characters in str-exp is stored into num-var.

LET EQUAL num-var, num-exp
The value of num-exp is stored into num-var.

NUMTOSTRING num-var, str-var
The numeric value in num-var is converted into a string and stored into str-var.

STRINGTONUM str-var, num-var
The string of numerals in str-var is converted into a number and stored into num-var. If
there is something in str-var which is not a numeral, and therefore impossible to convert
into a number, a big error happens.

ERASE str-var
ERASE all

The former empties the contents of str-var, the latter empties the contents of all
currently defined string variables.

Miscellaneous Commands:

ELAPSED num-var
The number of seconds which have passed since the last SAVETIME command is stored
into num-var.

SAVETIME
This command saves the current time internally. It is used in conjunction with the
ELAPSED command to determine how may seconds have passed.

COMM str-exp
Str-exp is of the form BAUD-PARITY-DATABITS-STOPBITS-DUPLEX. For example: COMM
9600-N-8-1-FULL. This changes the communications parameters of the modem.

LONG BREAK, SHORT BREAK
These send either a long (4 second) or short (233 millisecond) break signal to the
modem. Check your modem manual to determine what happens when it gets there.

COMMENT
The remainder of the line is ignored by the script interpreter. Alternatively, parentheses
placed around a line hide it from the interpreter. Comments do not extend for multiple
lines. Each line must be commented out separately.

PAUSE num-exp
Execution of the script pauses for num-exp seconds.

CRAWL on/off
The interpreter pauses for 2 seconds between execution of command lines between
CRAWL ON and CRAWL OFF. This is sometimes more convenient than putting a PAUSE
between each line.

LOUD
Procedure execution is monitored in a special window. The special window has a way of
popping up right on top of everything, and just generally getting in the way, so you’ll
have to play around a bit before this command seems more useful than annoying.

QUIET
Procedure execution stops being monitored in a special window. The special window
does not disappear. This is too bad, but it cannot be helped.

END
Execution of the script is terminated.

Special Commands:

CHUNKING boolean
This is true if you are attempting to connect to one of those broken types of servers
which cannot handle more than a small number of bytes at a time. Frequently, there
will be some IBM product between you and your search engine, and you will need to set
this to TRUE. The default is FALSE.

CHUNQUETTESIZE num
In case CHUNKING is TRUE, this must be set to the size of chunks into which the
outgoing data will be divided.

ECHOING boolean
This should be TRUE if the WAIS server will be echoing packets sent
by the WAIStation. For reasons of performance and efficiency, you should make every
effort to get an echoing server to stop echoing. Since that can’t always be done (often
there’s some IBM product between you and your search engine, for example) this
command corrects for such server design flaws.

HEXING hex-type
Currently there are three types of encoding used in the transport layer underneath the
z39.50 protocol. The options are IBM, OLD, and NEW. This is only a suggestion to
WAIStation as to which one to use. It will try to adapt to whatever type the server is
using. In most cases, the value of hex-type should be IBM.

SCRIPT_TIMEOUT num
This is the maximum number of seconds waited for a prompt or alert to be returned
before terminating script execution. Num should be greater than any pending
PANICAFTER time, otherwise the panic condition will never occur.

DEBUGGING boolean
Set this to TRUE to watch what’s happening with the modem and to log all incoming and
outgoing z39.50 packets into the file named with the LOGFILE command.

LOGFILE pathname
Used in conjunction with the DEBUGGING command. Pathname is of the form
volume:folder:folder....:filename. Filename need not already exist. If it does, the former
contents are destroyed. It is very important that all folders exist, though. If they don’t,
WAIStation will swiftly and suddenly vanish away, and never be met with again.

DOWQUEST
If you are attempting to connect to DowQuest, this command should appear somewhere
in the script. It sets an internal variable which compensates for a number of, shall we
say politely, less than optimal implementation characteristics of the DowJones system.

INDEX:
ADD 5
ALERT1 4
ALERT2 4
ALERT3 4
AND 5

boolean 2
BYTEADD 5
BYTEVAL 5

CHUNKING 7
CHUNQUETTESIZE 7
COMM 7
COMMENT 7
CONCAT 6
CONTAINS 6
CONVUP 6
COPYINTO 6
CRAWL 7

DEBUGGING 8
DIVIDE 5
DOWQUEST 8

ECHOING 8
ELAPSED 6
EMPTY 6
END 7
ERASE 6
ERASE all 6
error handling 3

GOSUB 4

HEXING 8

IF NO 5
IF YES 4
Input and output commands 3

JUMPTO 4

LENGTH 6
LET EQUAL 6
LOGFILE 8
LONG BREAK, 7
LOUD 7

Miscellaneous Commands 6

MULTIPLY 5

numeric constant 2
numeric expression 2
numeric variable 2
NUMTOSTRING 6

ONPANIC 4
OR 5

PANICAFTER 4
PAUSE 7
PROMPT 3

QUERY 3
QUIET 7

RETURN 4

SAVETIME 6
SCRIPT_TIMEOUT 8
SHORT BREAK 7
Special Commands 7
string constant 2
String Manipulation Commands 6
string variable 3
STRINGTONUM 6
SUBTRACT 5

TEST 5
TYPE 3

yes/no flag 3

